(New page: == Define a CT LTI System == <math>y(t)=2x(t)-3x(t-4)\!</math> == Unit Impulse Response == The unit impulse response is simply the systems response to an input <math>\delta(t)\!</math>....) |
|||
Line 6: | Line 6: | ||
== Unit Impulse Response == | == Unit Impulse Response == | ||
The unit impulse response is simply the systems response to an input <math>\delta(t)\!</math>. Thus, in our case, the unit impulse response is simply <math>h(t)=2\delta(t)-3\delta(t-4)\!</math> | The unit impulse response is simply the systems response to an input <math>\delta(t)\!</math>. Thus, in our case, the unit impulse response is simply <math>h(t)=2\delta(t)-3\delta(t-4)\!</math> | ||
+ | |||
+ | |||
+ | == System Function == | ||
+ | To find the system function <math>H(s)\!</math> we use the formula <br> <math>H(s)=\int__{-\infty}^\infty h(t)e^{st}dt</math> where <math>s=j\omega\!</math>. |
Revision as of 09:58, 25 September 2008
Define a CT LTI System
$ y(t)=2x(t)-3x(t-4)\! $
Unit Impulse Response
The unit impulse response is simply the systems response to an input $ \delta(t)\! $. Thus, in our case, the unit impulse response is simply $ h(t)=2\delta(t)-3\delta(t-4)\! $
System Function
To find the system function $ H(s)\! $ we use the formula
$ H(s)=\int__{-\infty}^\infty h(t)e^{st}dt $ where $ s=j\omega\! $.