Line 7: Line 7:
 
== Answer ==
 
== Answer ==
  
We can rewrite the signal <math>x(t)</math> as
+
We can rewrite the signal <math>\,x(t)\,</math> as
  
 
<math>\,x(t)=\frac{3\pi}{2}(\frac{e^{j(\frac{3\pi}{2}t+\pi)}+e^{-j(\frac{3\pi}{2}t+\pi)}}{2})(\frac{e^{j(\frac{3\pi}{4}t+\frac{\pi}{2})}-e^{-j(\frac{3\pi}{4}t+\frac{\pi}{2})}}{2j})\,</math>
 
<math>\,x(t)=\frac{3\pi}{2}(\frac{e^{j(\frac{3\pi}{2}t+\pi)}+e^{-j(\frac{3\pi}{2}t+\pi)}}{2})(\frac{e^{j(\frac{3\pi}{4}t+\frac{\pi}{2})}-e^{-j(\frac{3\pi}{4}t+\frac{\pi}{2})}}{2j})\,</math>
Line 19: Line 19:
 
<math>\,x(t)=-\frac{3\pi}{8}(e^{j\frac{9\pi}{4}t}-e^{j\frac{3\pi}{4}t}+e^{-j\frac{3\pi}{4}t}-e^{-j\frac{9\pi}{4}t})\,</math>
 
<math>\,x(t)=-\frac{3\pi}{8}(e^{j\frac{9\pi}{4}t}-e^{j\frac{3\pi}{4}t}+e^{-j\frac{3\pi}{4}t}-e^{-j\frac{9\pi}{4}t})\,</math>
  
<math>\,x(t)=
+
<math>\,x(t)=-\frac{3\pi}{8}e^{j\frac{\pi}{4}t}+\frac{3\pi}{8}e^{j\frac{3\pi}{4}t}-\frac{3\pi}{8}e^{-j\frac{3\pi}{4}t}+\frac{3\pi}{8}e^{-j\frac{\pi}{4}t}\,</math>
-\frac{3\pi}{8}e^{j\frac{\pi}{4}t}+
+
 
\frac{3\pi}{8}e^{j\frac{3\pi}{4}t}-
+
 
\frac{3\pi}{8}e^{-j\frac{3\pi}{4}t}+
+
This form of <math>\,x(t)\,</math> is in the format of a Fourier series, so we can directly get the fundamental frequency <math>\,\omega_o\,</math> and the coefficients <math>\,a_k\,</math>.  Therefore, the answer is:
\frac{3\pi}{8}e^{-j\frac{\pi}{4}t}
+
 
\,</math>
+
<math>\,\omega_o=\frac{\pi}{4}\,</math>
 +
 
 +
and the coefficients are
 +
 
 +
<math>\,a_{-3}=-\frac{3\pi}{8}\,</math>
 +
 
 +
<math>\,a_{-1}=\frac{3\pi}{8}\,</math>
 +
 
 +
<math>\,a_1=-\frac{3\pi}{8}\,</math>
 +
 
 +
<math>\,a_3=\frac{3\pi}{8}\,</math>
 +
 
 +
<math>\,a_k=0\,</math> for all other <math>\,k\in\mathbb{Z}\,</math>

Revision as of 08:57, 25 September 2008

Given the periodic CT signal

$ \,x(t)=\frac{3\pi}{2}\cos(\frac{3\pi}{2}t+\pi)\sin(\frac{3\pi}{4}t+\frac{\pi}{2})\, $

compute its Fourier series coefficients.

Answer

We can rewrite the signal $ \,x(t)\, $ as

$ \,x(t)=\frac{3\pi}{2}(\frac{e^{j(\frac{3\pi}{2}t+\pi)}+e^{-j(\frac{3\pi}{2}t+\pi)}}{2})(\frac{e^{j(\frac{3\pi}{4}t+\frac{\pi}{2})}-e^{-j(\frac{3\pi}{4}t+\frac{\pi}{2})}}{2j})\, $

$ \,x(t)=\frac{3\pi}{8j}(e^{j\frac{3\pi}{2}t}e^{j\pi}+e^{-j\frac{3\pi}{2}t}e^{j\pi})(e^{j\frac{3\pi}{4}t}e^{j\frac{\pi}{2}}-e^{-j\frac{3\pi}{4}t}e^{j\frac{\pi}{2}})\, $

$ \,x(t)=\frac{3\pi}{8j}e^{j\pi}e^{j\frac{\pi}{2}}(e^{j\frac{3\pi}{2}t}+e^{-j\frac{3\pi}{2}t})(e^{j\frac{3\pi}{4}t}-e^{-j\frac{3\pi}{4}t})\, $

$ \,x(t)=-\frac{3\pi}{8}(e^{j(\frac{3\pi}{2}+\frac{3\pi}{4})t}-e^{j(\frac{3\pi}{2}-\frac{3\pi}{4})t}+e^{j(-\frac{3\pi}{2}+\frac{3\pi}{4})t}-e^{j(-\frac{3\pi}{2}-\frac{3\pi}{4})t})\, $

$ \,x(t)=-\frac{3\pi}{8}(e^{j\frac{9\pi}{4}t}-e^{j\frac{3\pi}{4}t}+e^{-j\frac{3\pi}{4}t}-e^{-j\frac{9\pi}{4}t})\, $

$ \,x(t)=-\frac{3\pi}{8}e^{j\frac{\pi}{4}t}+\frac{3\pi}{8}e^{j\frac{3\pi}{4}t}-\frac{3\pi}{8}e^{-j\frac{3\pi}{4}t}+\frac{3\pi}{8}e^{-j\frac{\pi}{4}t}\, $


This form of $ \,x(t)\, $ is in the format of a Fourier series, so we can directly get the fundamental frequency $ \,\omega_o\, $ and the coefficients $ \,a_k\, $. Therefore, the answer is:

$ \,\omega_o=\frac{\pi}{4}\, $

and the coefficients are

$ \,a_{-3}=-\frac{3\pi}{8}\, $

$ \,a_{-1}=\frac{3\pi}{8}\, $

$ \,a_1=-\frac{3\pi}{8}\, $

$ \,a_3=\frac{3\pi}{8}\, $

$ \,a_k=0\, $ for all other $ \,k\in\mathbb{Z}\, $

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin