Line 11: | Line 11: | ||
<math>\,x(t)=\frac{3\pi}{2}(\frac{e^{j(\frac{3\pi}{2}t+\pi)}+e^{-j(\frac{3\pi}{2}t+\pi)}}{2})(\frac{e^{j(\frac{3\pi}{4}t+\frac{\pi}{2})}-e^{-j(\frac{3\pi}{4}t+\frac{\pi}{2})}}{2j})\,</math> | <math>\,x(t)=\frac{3\pi}{2}(\frac{e^{j(\frac{3\pi}{2}t+\pi)}+e^{-j(\frac{3\pi}{2}t+\pi)}}{2})(\frac{e^{j(\frac{3\pi}{4}t+\frac{\pi}{2})}-e^{-j(\frac{3\pi}{4}t+\frac{\pi}{2})}}{2j})\,</math> | ||
− | <math>\,x(t)=\frac{3\pi}{8j}(e^{j | + | <math>\,x(t)=\frac{3\pi}{8j}(e^{j\frac{3\pi}{2}t}e^{j\pi}+e^{-j\frac{3\pi}{2}t}e^{j\pi})(e^{j\frac{3\pi}{4}t}e^{j\frac{\pi}{2}}-e^{-j\frac{3\pi}{4}t}e^{j\frac{\pi}{2}})\,</math> |
− | <math>\,x(t)=\frac{3\pi}{8j}e^{j\pi}e^{j\frac{\pi}{2}}(e^{j | + | <math>\,x(t)=\frac{3\pi}{8j}e^{j\pi}e^{j\frac{\pi}{2}}(e^{j\frac{3\pi}{2}t}+e^{-j\frac{3\pi}{2}t})(e^{j\frac{3\pi}{4}t}-e^{-j\frac{3\pi}{4}t})\,</math> |
+ | |||
+ | <math>\,x(t)=-\frac{3\pi}{8}(e^{j(\frac{3\pi}{2}+\frac{3\pi}{4})t}-e^{j(\frac{3\pi}{2}-\frac{3\pi}{4})t}+e^{j(-\frac{3\pi}{2}+\frac{3\pi}{4})t}-e^{j(-\frac{3\pi}{2}-\frac{3\pi}{4})t})\,</math> |
Revision as of 08:41, 25 September 2008
Given the periodic CT signal
$ \,x(t)=\frac{3\pi}{2}\cos(\frac{3\pi}{2}t+\pi)\sin(\frac{3\pi}{4}t+\frac{\pi}{2})\, $
compute its Fourier series coefficients.
Answer
We can rewrite the signal $ x(t) $ as
$ \,x(t)=\frac{3\pi}{2}(\frac{e^{j(\frac{3\pi}{2}t+\pi)}+e^{-j(\frac{3\pi}{2}t+\pi)}}{2})(\frac{e^{j(\frac{3\pi}{4}t+\frac{\pi}{2})}-e^{-j(\frac{3\pi}{4}t+\frac{\pi}{2})}}{2j})\, $
$ \,x(t)=\frac{3\pi}{8j}(e^{j\frac{3\pi}{2}t}e^{j\pi}+e^{-j\frac{3\pi}{2}t}e^{j\pi})(e^{j\frac{3\pi}{4}t}e^{j\frac{\pi}{2}}-e^{-j\frac{3\pi}{4}t}e^{j\frac{\pi}{2}})\, $
$ \,x(t)=\frac{3\pi}{8j}e^{j\pi}e^{j\frac{\pi}{2}}(e^{j\frac{3\pi}{2}t}+e^{-j\frac{3\pi}{2}t})(e^{j\frac{3\pi}{4}t}-e^{-j\frac{3\pi}{4}t})\, $
$ \,x(t)=-\frac{3\pi}{8}(e^{j(\frac{3\pi}{2}+\frac{3\pi}{4})t}-e^{j(\frac{3\pi}{2}-\frac{3\pi}{4})t}+e^{j(-\frac{3\pi}{2}+\frac{3\pi}{4})t}-e^{j(-\frac{3\pi}{2}-\frac{3\pi}{4})t})\, $