Line 10: Line 10:
  
 
<math>\,x(t)=\frac{3\pi}{2}(\frac{e^{j(\frac{3\pi}{2}t+\pi)}+e^{-j(\frac{3\pi}{2}t+\pi)}}{2})(\frac{e^{j(\frac{3\pi}{4}t+\frac{\pi}{2})}-e^{-j(\frac{3\pi}{4}t+\frac{\pi}{2})}}{2j})\,</math>
 
<math>\,x(t)=\frac{3\pi}{2}(\frac{e^{j(\frac{3\pi}{2}t+\pi)}+e^{-j(\frac{3\pi}{2}t+\pi)}}{2})(\frac{e^{j(\frac{3\pi}{4}t+\frac{\pi}{2})}-e^{-j(\frac{3\pi}{4}t+\frac{\pi}{2})}}{2j})\,</math>
 +
 +
<math>\,x(t)=\frac{3\pi}{8j}(e^{j(\frac{3\pi}{2}t)}e^{j\pi}+e^{-j(\frac{3\pi}{2}t)}e^{j\pi})(e^{j(\frac{3\pi}{4}t)}e^{j\frac{\pi}{2}}-e^{-j(\frac{3\pi}{4}t)}e^{j\frac{\pi}{2}})\,</math>

Revision as of 08:32, 25 September 2008

Given the periodic CT signal

$ \,x(t)=\frac{3\pi}{2}\cos(\frac{3\pi}{2}t+\pi)\sin(\frac{3\pi}{4}t+\frac{\pi}{2})\, $

compute its Fourier series coefficients.

Answer

We can rewrite the signal $ x(t) $ as

$ \,x(t)=\frac{3\pi}{2}(\frac{e^{j(\frac{3\pi}{2}t+\pi)}+e^{-j(\frac{3\pi}{2}t+\pi)}}{2})(\frac{e^{j(\frac{3\pi}{4}t+\frac{\pi}{2})}-e^{-j(\frac{3\pi}{4}t+\frac{\pi}{2})}}{2j})\, $

$ \,x(t)=\frac{3\pi}{8j}(e^{j(\frac{3\pi}{2}t)}e^{j\pi}+e^{-j(\frac{3\pi}{2}t)}e^{j\pi})(e^{j(\frac{3\pi}{4}t)}e^{j\frac{\pi}{2}}-e^{-j(\frac{3\pi}{4}t)}e^{j\frac{\pi}{2}})\, $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang