(New page: ===System=== y(t) = 5x(t) ===Unit Impulse Response=== <math>x(t) = \delta(t)</math> <math>h(t) = 5\delta(t)</math> ===System Function=== :<math>y(t) = \int^{\infty}_{-\infty} h(\tau) * ...) |
(→System Function) |
||
Line 14: | Line 14: | ||
:<math>H(s) = 5 e^{-jw0}</math> | :<math>H(s) = 5 e^{-jw0}</math> | ||
:<math>H(s) = 5\,</math> | :<math>H(s) = 5\,</math> | ||
+ | |||
+ | ===Response to a signal=== |
Revision as of 07:34, 25 September 2008
System
y(t) = 5x(t)
Unit Impulse Response
$ x(t) = \delta(t) $ $ h(t) = 5\delta(t) $
System Function
- $ y(t) = \int^{\infty}_{-\infty} h(\tau) * x(\tau) d\tau, $
- $ y(t) = \int^{\infty}_{-\infty} 5\delta(\tau) * e^{-jw(t -\tau)} d \tau, $
- $ y(t) = e^{jwt} \int^{\infty}_{-\infty} 5 \delta(\tau) e^{-jw\tau} d\tau $
- $ H(s) = \int^{\infty}_{-\infty} 5 \delta(\tau) e^{-jw\tau} d\tau $
- $ H(s) = 5 e^{-jw0} $
- $ H(s) = 5\, $