(→Equations) |
|||
Line 2: | Line 2: | ||
Fourier series of x(t): | Fourier series of x(t): | ||
+ | <br> | ||
<math>x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t}</math> | <math>x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t}</math> | ||
Signal Coefficients: | Signal Coefficients: | ||
+ | <br> | ||
<math>a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt</math>. | <math>a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt</math>. | ||
− | |||
− | |||
== Defined Signal == | == Defined Signal == | ||
<math>x(t)=4sin(3t)+(1+6j)cos(2t)\!</math> | <math>x(t)=4sin(3t)+(1+6j)cos(2t)\!</math> |
Revision as of 16:09, 24 September 2008
Equations
Fourier series of x(t):
$ x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t} $
Signal Coefficients:
$ a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt $.
Defined Signal
$ x(t)=4sin(3t)+(1+6j)cos(2t)\! $