(Equations)
Line 2: Line 2:
  
 
Fourier series of x(t):
 
Fourier series of x(t):
 +
<br>
 
<math>x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t}</math>
 
<math>x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t}</math>
  
 
Signal Coefficients:
 
Signal Coefficients:
 +
<br>
 
<math>a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt</math>.
 
<math>a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt</math>.
 
 
  
 
== Defined Signal ==
 
== Defined Signal ==
  
 
<math>x(t)=4sin(3t)+(1+6j)cos(2t)\!</math>
 
<math>x(t)=4sin(3t)+(1+6j)cos(2t)\!</math>

Revision as of 16:09, 24 September 2008

Equations

Fourier series of x(t):
$ x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t} $

Signal Coefficients:
$ a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt $.

Defined Signal

$ x(t)=4sin(3t)+(1+6j)cos(2t)\! $

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman