Line 1: Line 1:
 +
== A ==
 +
 
<font size="3">Let <math>y(t)=\int_{-\infty}^{\infty}2x(t)dt</math>
 
<font size="3">Let <math>y(t)=\int_{-\infty}^{\infty}2x(t)dt</math>
  
Line 11: Line 13:
 
<math>=(\frac{-2}{s}e^{-st})|_{0}^{\infty}</math>
 
<math>=(\frac{-2}{s}e^{-st})|_{0}^{\infty}</math>
  
<math>=\frac{2}{s}</math>
+
<math>=\frac{2}{s}</math></font>
  
</font>
+
== B ==

Revision as of 11:51, 24 September 2008

A

Let $ y(t)=\int_{-\infty}^{\infty}2x(t)dt $

Then $ h(t) =2u(t) $

And $ H(s) = \int_{-\infty}^{\infty}h(t)e^{-st}dt $

$ =\int_{-\infty}^{\infty}2u(t)e^{-st}dt $

$ =\int_{0}^{\infty}2e^{-st}dt $

$ =(\frac{-2}{s}e^{-st})|_{0}^{\infty} $

$ =\frac{2}{s} $

B

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang