(New page: <font size="3">Let <math>x(t)=cos(4 \pi t) + sin(6 \pi t)</math> Then <math>h(t) =</math> </font>)
 
Line 1: Line 1:
<font size="3">Let <math>x(t)=cos(4 \pi t) + sin(6 \pi t)</math>
+
<font size="3">Let <math>y(t)=\int_{-\infty}^{\infty}2x(t)dt</math>
 +
 
 +
Then <math>h(t) =2u(t)</math>
 +
 
 +
And <math>H(s) = \int_{-\infty}^{\infty}h(t)e^{-st}dt</math>
 +
 
 +
<math>=\int_{-\infty}^{\infty}2u(t)e^{-st}dt</math>
 +
 
 +
<math>=\int_{0}^{\infty}2e^{-st}dt</math>
 +
 
 +
<math>=(\frac{-2}{s}e^{-st})|_{0}^{\infty}</math>
 +
 
 +
<math>=\frac{2}{s}</math>
  
Then <math>h(t) =</math>
 
 
</font>
 
</font>

Revision as of 11:50, 24 September 2008

Let $ y(t)=\int_{-\infty}^{\infty}2x(t)dt $

Then $ h(t) =2u(t) $

And $ H(s) = \int_{-\infty}^{\infty}h(t)e^{-st}dt $

$ =\int_{-\infty}^{\infty}2u(t)e^{-st}dt $

$ =\int_{0}^{\infty}2e^{-st}dt $

$ =(\frac{-2}{s}e^{-st})|_{0}^{\infty} $

$ =\frac{2}{s} $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang