Line 10: Line 10:
  
 
<math>H(z) = \sum_{m=-\infty}^{\infty}h[m] e^{-j \omega m} = \sum_{m=-\infty}^{\infty} \frac{1}{2}u[m] e^{-j \omega m} = \sum_{m=0}^{\infty} \frac{1}{2}e^{-j \omega m} = \sum_{m=0}^{\infty} (\frac{1}{2 e^{j \omega}})^m = \frac{1}{1-\frac{1}{2 e^{j \omega}}}</math> &nbsp; &nbsp; (geometric series <math>r^n</math> where <math>|r| < 1</math>)
 
<math>H(z) = \sum_{m=-\infty}^{\infty}h[m] e^{-j \omega m} = \sum_{m=-\infty}^{\infty} \frac{1}{2}u[m] e^{-j \omega m} = \sum_{m=0}^{\infty} \frac{1}{2}e^{-j \omega m} = \sum_{m=0}^{\infty} (\frac{1}{2 e^{j \omega}})^m = \frac{1}{1-\frac{1}{2 e^{j \omega}}}</math> &nbsp; &nbsp; (geometric series <math>r^n</math> where <math>|r| < 1</math>)
 +
 +
==Response to x[n]==
 +
 +
Input <math>x[n]</math> is the following signal:
 +
 +
[[Image:SawDTJP_ECE301Fall2008mboutin.jpg]]
 +
 +
The Fourier series coefficients for <math>x[n]</math> are:

Revision as of 18:58, 23 September 2008

DT LTI System

$ y[n] = \sum_{n=-\infty}^{\infty}\frac{1}{2}x[n] \; \; $     (scaled DT integral)

h[n]

$ h[n] = \sum_{n=-\infty}^{\infty}\frac{1}{2}\delta [n] = \frac{1}{2}u[n] $

H(z)

$ H(z) = \sum_{m=-\infty}^{\infty}h[m] e^{-j \omega m} = \sum_{m=-\infty}^{\infty} \frac{1}{2}u[m] e^{-j \omega m} = \sum_{m=0}^{\infty} \frac{1}{2}e^{-j \omega m} = \sum_{m=0}^{\infty} (\frac{1}{2 e^{j \omega}})^m = \frac{1}{1-\frac{1}{2 e^{j \omega}}} $     (geometric series $ r^n $ where $ |r| < 1 $)

Response to x[n]

Input $ x[n] $ is the following signal:

SawDTJP ECE301Fall2008mboutin.jpg

The Fourier series coefficients for $ x[n] $ are:

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett