Line 8: | Line 8: | ||
<math>h[n]=(2n-3)^n\delta{[n-5]}</math> | <math>h[n]=(2n-3)^n\delta{[n-5]}</math> | ||
+ | |||
+ | Then the system function F[z] is obtained by | ||
+ | |||
+ | <math>F[z]=\sum_{m= - \infty}^{\infty}h[m]z^{-m}</math> |
Revision as of 08:31, 25 September 2008
Define a DT LTI System
Let the DT LTI system be: $ y[n]=(2n-3)^nu[n-5] $
Obtain the Unit Impulse Response h[n] and the System Function F[z] of the system
First to obtain the unit impulse response h[n] we plug in $ \delta{[n]} $ into our y[n].
$ h[n]=(2n-3)^n\delta{[n-5]} $
Then the system function F[z] is obtained by
$ F[z]=\sum_{m= - \infty}^{\infty}h[m]z^{-m} $