(unit impulse response)
(unit impulse response)
Line 8: Line 8:
 
:<math>h(t)=10d(t) +d(t-1)\,</math>
 
:<math>h(t)=10d(t) +d(t-1)\,</math>
 
:<math>H(s)=\int_{-\infty}^{\infty} h(t)e^{-s t}dt</math>
 
:<math>H(s)=\int_{-\infty}^{\infty} h(t)e^{-s t}dt</math>
 +
:<math>H(s)=\int_{-\infty}^{\infty} (10d(t) +d(t-1))e^{-s t}dt</math>
 +
 +
Using the shifting property,
 +
:<math>H(s)=

Revision as of 05:46, 25 September 2008

CT LTI system

The system is:

$ y(t)=10x(t)+x(t-1) $

unit impulse response

Obtain the unit impulse response h(t) and the system function H(s) of your system. :

$ d (t) => System =>10 d (t) + d(t-1)\, $
$ h(t)=10d(t) +d(t-1)\, $
$ H(s)=\int_{-\infty}^{\infty} h(t)e^{-s t}dt $
$ H(s)=\int_{-\infty}^{\infty} (10d(t) +d(t-1))e^{-s t}dt $

Using the shifting property,

$ H(s)= $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett