(New page: ==CT LTI system == The system is: :<math>y(t)=10x(t)</math> ==unit impulse response== Obtain the unit impulse response h(t) and the system function H(s) of your system. : :<math>u (t) => S...)
 
(unit impulse response)
Line 7: Line 7:
 
:<math>h(t)=10u(t) \,</math>
 
:<math>h(t)=10u(t) \,</math>
 
:<math>H(s)=\int_{-\infty}^{\infty} h(t)e^{-s t}dt</math>
 
:<math>H(s)=\int_{-\infty}^{\infty} h(t)e^{-s t}dt</math>
:<math>H(s)=\int_{-\infty}^{\infty} 10u(t)e^{-s t}dt</math>
 
:<math>H(s)=10\int_0^{\infty} e^{-s t}dt</math>
 
...not done
 

Revision as of 12:22, 23 September 2008

CT LTI system

The system is:

$ y(t)=10x(t) $

unit impulse response

Obtain the unit impulse response h(t) and the system function H(s) of your system. :

$ u (t) => System =>10 u (t) \, $
$ h(t)=10u(t) \, $
$ H(s)=\int_{-\infty}^{\infty} h(t)e^{-s t}dt $

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman