(→DT Perodic function) |
(→DT Periodic function) |
||
Line 16: | Line 16: | ||
:<math>x[n]= \dfrac{5}{2}(-e^{-1/2 j \pi n}-e^{1/2 j \pi n}) \,</math> | :<math>x[n]= \dfrac{5}{2}(-e^{-1/2 j \pi n}-e^{1/2 j \pi n}) \,</math> | ||
:<math>x[n]= \dfrac{5}{2}(-2e^{1/2 j \pi n}) \,</math> | :<math>x[n]= \dfrac{5}{2}(-2e^{1/2 j \pi n}) \,</math> | ||
− | :<math>x[n]= -5(e^{ | + | :<math>x[n]= -5(e^{j \dfrac{\pi}{2} n}) \,</math> |
:<math>N=\dfrac{2\pi}{\pi/2}K </math>, where K is the smallest integer, that makes N an integer. | :<math>N=\dfrac{2\pi}{\pi/2}K </math>, where K is the smallest integer, that makes N an integer. | ||
:<math> K = 1,N = 4\,</math> | :<math> K = 1,N = 4\,</math> | ||
− | :<math>a1=1/ | + | :<math>a0=average of signal = 0 \,</math> |
+ | :<math>a1=1/N\sum_{n=0}^{N-1} -5e^{j \dfrac{\pi}{2} n}e^{- j k \dfrac{2\pi}{N} n} </math> | ||
+ | :<math>a1=1/4\sum_{n=0}^{4-1} -5e^{j \dfrac{\pi}{2} n}e^{- j \dfrac{2\pi}{4} n} </math> | ||
+ | :<math>a1=1/4\sum_{n=0}^{3} -5e^{j \dfrac{\pi}{2} n}e^{- j \dfrac{\pi}{2} n} </math> | ||
+ | :<math>a1=1/4\sum_{n=0}^{3} -5 </math> | ||
+ | :<math>a1=-5/4 \,</math> | ||
− | + | :<math>a2=1/4\sum_{n=0}^{4-1} -5e^{j \dfrac{\pi}{2} n}e^{- j 2 \dfrac{2\pi}{4} n} </math> | |
− | :<math> | + | :<math>a2=1/4\sum_{n=0}^{3} -5e^{j \dfrac{\pi}{2} n}e^{- j \pi n} </math> |
− | :<math> | + | :<math>a2=1/4\sum_{n=0}^{3} -5e^{-j \dfrac{\pi}{2} n}\ </math> |
− | :<math> | + | :<math>a2=-5/4(1+-j+-1+i=0 \, </math> |
− | :<math> | + | |
− | :<math> | + | |
− | + | :<math>a3=1/4\sum_{n=0}^{4-1} -5e^{j \dfrac{\pi}{2} n}e^{- j 3 \dfrac{2\pi}{4} n} </math> | |
+ | :<math>a3=1/4\sum_{n=0}^{3} -5e^{j \dfrac{\pi}{2} n}e^{- j \dfrac{3\pi}{2} n} </math> | ||
+ | :<math>a3=-5/4\sum_{n=0}^{3} e^{-j n} </math> | ||
+ | :<math>a3=-5/4(1+-1+1+-1=0 \, </math> |
Revision as of 10:18, 23 September 2008
DT Periodic function
Find the Fourier Series coefficients of x[n]
- $ x[n]=5cos(5/2\pi n +\pi) \, $
- $ x[n]=5cos(5/2 \pi n +\pi) = \dfrac{5(e^{5/2 j \pi n+\pi}-e^{-5/2 j \pi n-\pi})}{2} \, $
- $ x[n]= \dfrac{5}{2}(e^{5/2 j \pi n}e^{\pi}-e^{-5/2 j \pi n}e^{-\pi}) \, $
- $ e^{\pi}=-1,e^{-\pi}=1 \, $
- $ x[n]= \dfrac{5}{2}(e^{-5/2 j \pi n}-e^{5/2 j \pi n}) \, $
- $ x[n]= \dfrac{5}{2}(e^{-2 j \pi n}e^{-1/2 j \pi n}-e^{2 j \pi n}e^{1/2 j \pi n}) \, $
- $ x[n]= \dfrac{5}{2}(e^{-1/2 j \pi n}-e^{1/2 j \pi n}) \, $
Note that,
- $ 1 = e^{2\pi} \, $
- $ e^{2\pi}*e^{-1/2\pi}=e^{3/2\pi}=e^{1/2\pi}e^(\pi)=-e^{1/2\pi} \, $
- $ x[n]= \dfrac{5}{2}(-e^{-1/2 j \pi n}-e^{1/2 j \pi n}) \, $
- $ x[n]= \dfrac{5}{2}(-2e^{1/2 j \pi n}) \, $
- $ x[n]= -5(e^{j \dfrac{\pi}{2} n}) \, $
- $ N=\dfrac{2\pi}{\pi/2}K $, where K is the smallest integer, that makes N an integer.
- $ K = 1,N = 4\, $
- $ a0=average of signal = 0 \, $
- $ a1=1/N\sum_{n=0}^{N-1} -5e^{j \dfrac{\pi}{2} n}e^{- j k \dfrac{2\pi}{N} n} $
- $ a1=1/4\sum_{n=0}^{4-1} -5e^{j \dfrac{\pi}{2} n}e^{- j \dfrac{2\pi}{4} n} $
- $ a1=1/4\sum_{n=0}^{3} -5e^{j \dfrac{\pi}{2} n}e^{- j \dfrac{\pi}{2} n} $
- $ a1=1/4\sum_{n=0}^{3} -5 $
- $ a1=-5/4 \, $
- $ a2=1/4\sum_{n=0}^{4-1} -5e^{j \dfrac{\pi}{2} n}e^{- j 2 \dfrac{2\pi}{4} n} $
- $ a2=1/4\sum_{n=0}^{3} -5e^{j \dfrac{\pi}{2} n}e^{- j \pi n} $
- $ a2=1/4\sum_{n=0}^{3} -5e^{-j \dfrac{\pi}{2} n}\ $
- $ a2=-5/4(1+-j+-1+i=0 \, $
- $ a3=1/4\sum_{n=0}^{4-1} -5e^{j \dfrac{\pi}{2} n}e^{- j 3 \dfrac{2\pi}{4} n} $
- $ a3=1/4\sum_{n=0}^{3} -5e^{j \dfrac{\pi}{2} n}e^{- j \dfrac{3\pi}{2} n} $
- $ a3=-5/4\sum_{n=0}^{3} e^{-j n} $
- $ a3=-5/4(1+-1+1+-1=0 \, $