(→DT Perodic function) |
(→DT Perodic function) |
||
Line 1: | Line 1: | ||
− | ==DT | + | ==DT Periodic function== |
Find the Fourier Series coefficients of x[n] | Find the Fourier Series coefficients of x[n] | ||
:<math>x[n]=5cos(5/2\pi n +\pi) \, </math> | :<math>x[n]=5cos(5/2\pi n +\pi) \, </math> | ||
− | + | ||
− | + | :<math>x[n]=5cos(5/2 \pi n +\pi) = \dfrac{5(e^{5/2 j \pi n+\pi}-e^{-5/2 j \pi n-\pi})}{2} \,</math> | |
− | :<math>x[n]=5cos(5/2 | + | :<math>x[n]= \dfrac{5}{2}(e^{5/2 j \pi n}e^{\pi}-e^{-5/2 j \pi n}e^{-\pi}) \,</math> |
− | :<math>x[n]= \dfrac{5}{2}(e^{5/2\pi n}e^{\pi}-e^{-5/2\pi n}e^{-\pi}) \,</math> | + | |
:<math>e^{\pi}=-1,e^{-\pi}=1 \,</math> | :<math>e^{\pi}=-1,e^{-\pi}=1 \,</math> | ||
− | :<math>x[n]= \dfrac{5}{2}(e^{-5/2\pi n}-e^{5/2\pi n}) \,</math> | + | :<math>x[n]= \dfrac{5}{2}(e^{-5/2 j \pi n}-e^{5/2 j \pi n}) \,</math> |
+ | :<math>x[n]= \dfrac{5}{2}(e^{-2 j \pi n}e^{-1/2 j \pi n}-e^{2 j \pi n}e^{1/2 j \pi n}) \,</math> | ||
+ | :<math>x[n]= \dfrac{5}{2}(e^{-1/2 j \pi n}-e^{1/2 j \pi n}) \,</math> | ||
+ | |||
+ | Note that, | ||
+ | :<math> 1 = e^{2\pi} \,</math> | ||
+ | :<math> e^{2\pi}*e^{-1/2\pi}=e^{3/2\pi}=e^{1/2\pi}e^(\pi)=-e^{1/2\pi} \,</math> | ||
+ | :<math>x[n]= \dfrac{5}{2}(-e^{-1/2 j \pi n}-e^{1/2 j \pi n}) \,</math> | ||
+ | :<math>x[n]= \dfrac{5}{2}(-2e^{1/2 j \pi n}) \,</math> | ||
+ | :<math>x[n]= -5(e^{1/2 j \pi n}) \,</math> | ||
+ | :<math>N=\dfrac{2\pi}{\pi/2}K </math>, where K is the smallest integer, that makes N an integer. | ||
+ | :<math> K = 1,N = 4\,</math> | ||
+ | |||
+ | :<math>a1=1/4\sum_{k=0}^{N-1} -5(e^{1/2 j \pi n})e^{- j 2\pi/N n} | ||
+ | |||
+ | or | ||
+ | :<math>x[0]=-1 \,</math> | ||
+ | :<math>x[1]=0 \,</math> | ||
+ | :<math>x[2]=1 \,</math> | ||
+ | :<math>x[3]=0 \,</math> | ||
+ | :<math>x[4]=-1 \,</math> | ||
+ | a0=average of signal = 0 |
Revision as of 09:50, 23 September 2008
DT Periodic function
Find the Fourier Series coefficients of x[n]
- $ x[n]=5cos(5/2\pi n +\pi) \, $
- $ x[n]=5cos(5/2 \pi n +\pi) = \dfrac{5(e^{5/2 j \pi n+\pi}-e^{-5/2 j \pi n-\pi})}{2} \, $
- $ x[n]= \dfrac{5}{2}(e^{5/2 j \pi n}e^{\pi}-e^{-5/2 j \pi n}e^{-\pi}) \, $
- $ e^{\pi}=-1,e^{-\pi}=1 \, $
- $ x[n]= \dfrac{5}{2}(e^{-5/2 j \pi n}-e^{5/2 j \pi n}) \, $
- $ x[n]= \dfrac{5}{2}(e^{-2 j \pi n}e^{-1/2 j \pi n}-e^{2 j \pi n}e^{1/2 j \pi n}) \, $
- $ x[n]= \dfrac{5}{2}(e^{-1/2 j \pi n}-e^{1/2 j \pi n}) \, $
Note that,
- $ 1 = e^{2\pi} \, $
- $ e^{2\pi}*e^{-1/2\pi}=e^{3/2\pi}=e^{1/2\pi}e^(\pi)=-e^{1/2\pi} \, $
- $ x[n]= \dfrac{5}{2}(-e^{-1/2 j \pi n}-e^{1/2 j \pi n}) \, $
- $ x[n]= \dfrac{5}{2}(-2e^{1/2 j \pi n}) \, $
- $ x[n]= -5(e^{1/2 j \pi n}) \, $
- $ N=\dfrac{2\pi}{\pi/2}K $, where K is the smallest integer, that makes N an integer.
- $ K = 1,N = 4\, $
- $ a1=1/4\sum_{k=0}^{N-1} -5(e^{1/2 j \pi n})e^{- j 2\pi/N n} or :<math>x[0]=-1 \, $
- $ x[1]=0 \, $
- $ x[2]=1 \, $
- $ x[3]=0 \, $
- $ x[4]=-1 \, $
a0=average of signal = 0