Line 17: Line 17:
  
  
<math>\omega_0\,</math> ends up being <math>\pi\,</math>
+
<math>\omega_0\,</math> ends up being <math>\pi\,</math> for this signal
 +
 
 +
So because of that, in my last step, i was able to determine what value of K's i had.  (k = 3,-3,5,-5)
 +
 
 +
So then you just take the coefficients of those terms to get the <math>a_k\,</math>

Revision as of 17:28, 22 September 2008

CT signal:

$ x(t) = 4\sin(5 \pi t) - (2 + j)\cos(3 \pi t)\, $


$ x(t) = 4 * \frac{e^{j5\pi t} - e^{-j5\pi t}}{2} - (2+j)*\frac{e^{j3\pi t} + e^{-j3\pi t}}{2}\, $


$ x(t) = 2e^{j5\pi t} - 2e^{-j5\pi t} - \frac{2+j}{2}e^{j3\pi t} - \frac{2+j}{2}e^{j3\pi t}\, $


$ x(t) = 2e^{5*j\pi t} - 2e^{-5*j\pi t} - \frac{2+j}{2}e^{3*j\pi t} - \frac{2+j}{2}e^{-3*j\pi t}\, $


$ \omega_0\, $ ends up being $ \pi\, $ for this signal

So because of that, in my last step, i was able to determine what value of K's i had. (k = 3,-3,5,-5)

So then you just take the coefficients of those terms to get the $ a_k\, $

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin