Line 1: Line 1:
 
CT Signal:
 
CT Signal:
 
<br>
 
<br>
<math>X(t) = 6\cos(2\pit) + 8\sin(4\pit)\,</math><br>
+
<math>X(t) = 6\cos(2\pi t) + 8\sin(4\pi t)\,</math><br>
<math>X(t) = 6\frac{e^{j2\pit}+e^{-j2\pit}}{2} + 8\frac{e^{j4\pit}-e^{-j4\pit}}{2}\,</math><br>
+
<math>X(t) = 6\frac{e^{j2\pi t}+e^{-j2\pi t}}{2} + 8\frac{e^{j4\pi t}-e^{-j4\pi t}}{2}\,</math><br>
<math>X(t) = 3e^{j2\pit}+3e^{-j2\pit} + 4e^{j4\pit}-4e^{-j4\pit}\,</math><br>
+
<math>X(t) = 3e^{j2\pi t}+3e^{-j2\pi t} + 4e^{j4\pi t}-4e^{-j4\pi t}\,</math><br>
 
With this expression we can conclude:<br>
 
With this expression we can conclude:<br>
 
<math>a_1 = 3\,</math><br>
 
<math>a_1 = 3\,</math><br>

Revision as of 06:41, 26 September 2008

CT Signal:
$ X(t) = 6\cos(2\pi t) + 8\sin(4\pi t)\, $
$ X(t) = 6\frac{e^{j2\pi t}+e^{-j2\pi t}}{2} + 8\frac{e^{j4\pi t}-e^{-j4\pi t}}{2}\, $
$ X(t) = 3e^{j2\pi t}+3e^{-j2\pi t} + 4e^{j4\pi t}-4e^{-j4\pi t}\, $
With this expression we can conclude:
$ a_1 = 3\, $
$ a_{-1} = 3\, $
$ a_2 = 4\, $
$ a_{-2} = -4\, $

To calculate $ a_k\, $, we use this equation with $ \omega_0\, $ value as 2:
$ x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\omega_0 t}\, $
Then you will find the value of $ a_k \, $ is zero. -- For any k other than 1, -1, 2, -2

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva