Line 3: Line 3:
 
<math>X(t) = 6\cos(2t) + 8\sin(4t)\,</math><br>
 
<math>X(t) = 6\cos(2t) + 8\sin(4t)\,</math><br>
 
<math>X(t) = 6\frac{e^{j2t}+e^{-j2t}}{2} + 8\frac{e^{j4t}-e^{-j4t}}{2}\,</math><br>
 
<math>X(t) = 6\frac{e^{j2t}+e^{-j2t}}{2} + 8\frac{e^{j4t}-e^{-j4t}}{2}\,</math><br>
<math>X(t) = 3(e^{j2t}+e^{-j2t}) + 4(e^{j4t}-e^{-j4t})\,</math><br>
+
<math>X(t) = 3e^{j2t}+3e^{-j2t} + 4e^{j4t}-4e^{-j4t}\,</math><br>

Revision as of 18:56, 21 September 2008

CT Signal:
$ X(t) = 6\cos(2t) + 8\sin(4t)\, $
$ X(t) = 6\frac{e^{j2t}+e^{-j2t}}{2} + 8\frac{e^{j4t}-e^{-j4t}}{2}\, $
$ X(t) = 3e^{j2t}+3e^{-j2t} + 4e^{j4t}-4e^{-j4t}\, $

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009