Line 3: Line 3:
 
<math>X(t) = 6\cos(2t) + 8\sin(4t)\,</math><br>
 
<math>X(t) = 6\cos(2t) + 8\sin(4t)\,</math><br>
 
<math>X(t) = 6\frac{e^{j2t}+e^{-j2t}}{2} + 8\frac{e^{j4t}-e^{-j4t}}{2}\,</math><br>
 
<math>X(t) = 6\frac{e^{j2t}+e^{-j2t}}{2} + 8\frac{e^{j4t}-e^{-j4t}}{2}\,</math><br>
 +
<math>X(t) = 3{e^{j2t}+e^{-j2t}} + 4{e^{j4t}-e^{-j4t}}\,</math><br>

Revision as of 18:56, 21 September 2008

CT Signal:
$ X(t) = 6\cos(2t) + 8\sin(4t)\, $
$ X(t) = 6\frac{e^{j2t}+e^{-j2t}}{2} + 8\frac{e^{j4t}-e^{-j4t}}{2}\, $
$ X(t) = 3{e^{j2t}+e^{-j2t}} + 4{e^{j4t}-e^{-j4t}}\, $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett