Line 20: Line 20:
  
  
K = 3             K= -1         K= 1         K= -3
+
K = 3
 +
K= -1
 +
K= 1
 +
K= -3
  
  
<math> a3 = \frac{1}{4}         a-1 = \frac{1}{4}       a1 = \frac{1}{4}       a-3 = \frac{1}{4} </math>
+
<math> a^{3} = \frac{1}{4} </math> 
 +
<math> a^{-1} = \frac{1}{4} </math>
 +
<math> a^{1} = \frac{1}{4} </math>
 +
<math> a^{-3} = \frac{1}{4} </math>

Revision as of 16:40, 23 September 2008

Define a Periodic CT signal and compute its Fourier series coefficients

Consider the following CT signal:


x(t) such that

$ ak = \frac{1}{T} \int_{0}^{T} x(t) * e^{-j*k} * \frac{2*\pi}{T} *dt $


$ x(t) = cos(2* \pi * t) * cos(4* \pi * t) $


$ = \frac{e^{j*2*\pi*t} + e^{-j*2*\pi*t}}{2} $


$ = \frac{1*e^{j*6*\pi*t}}{4} + \frac{e^{-j*2*\pi*t}}{4} + \frac{e^{j*2*\pi*t}}{4} + \frac{e^{-j*6*\pi*t}}{4} $


K = 3 K= -1 K= 1 K= -3


$ a^{3} = \frac{1}{4} $ $ a^{-1} = \frac{1}{4} $ $ a^{1} = \frac{1}{4} $ $ a^{-3} = \frac{1}{4} $

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin