(Coefficients)
Line 1: Line 1:
 
 
== CT signal ==
 
== CT signal ==
  
Line 18: Line 17:
 
Also, we can get coefficients <math>a_2</math>,<math>a_{-2}</math>,<math>a_5</math>,
 
Also, we can get coefficients <math>a_2</math>,<math>a_{-2}</math>,<math>a_5</math>,
 
<math>a_{-5}</math>.<br><br>
 
<math>a_{-5}</math>.<br><br>
<math>a_2 = a_-2 = \frac{1}{2}, a_5 = -2j, a_-5 = 2j, a_k = 0,</math>where k  is not 2,-2,5,-5
+
<math>a_2 = a_{-2} = \frac{1}{2}, a_5 = -2j, a_{-5} = 2j, a_k = 0,</math>where k  is not 2,-2,5,-5

Revision as of 18:17, 25 September 2008

CT signal

$ x(t) = cos({\frac{2\pi t}{3}})+ 4sin({\frac{5\pi t}{3}})\, $

Coefficients

$ cos({\frac{2\pi t}{3}}) = \frac{1}{2}e^{\frac{j2\pi t}{3}} + \frac{1}{2}e^{\frac{-j2\pi t}{3}} $

$ 4sin({\frac{5\pi t}{3}}) = -2je^{\frac{j5\pi t}{3}} + 2je^{\frac{-j5\pi t}{3}} $

$ x(t) = \frac{1}{2}e^{\frac{j2\pi t}{3}} + \frac{1}{2}e^{\frac{-j2\pi t}{3}} -2je^{\frac{j5\pi t}{3}} + 2je^{\frac{-j5\pi t}{3}} $


$ x(t) = \frac{1}{2}e^{\frac{2j2\pi t}{6}} + \frac{1}{2}e^{\frac{-2j2\pi t}{6}} -2je^{\frac{2j5\pi t}{6}} + 2je^{\frac{-2j5\pi t}{6}} $
Then we can know the fundamental frequency is $ \frac{\pi}{3} $.

Also, we can get coefficients $ a_2 $,$ a_{-2} $,$ a_5 $, $ a_{-5} $.

$ a_2 = a_{-2} = \frac{1}{2}, a_5 = -2j, a_{-5} = 2j, a_k = 0, $where k is not 2,-2,5,-5

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett