Line 6: Line 6:
 
<math>cos({\frac{2\pi t}{3}}) = \frac{1}{2}e^{\frac{j2\pi t}{3}} + \frac{1}{2}e^{\frac{-j2\pi t}{3}}</math>
 
<math>cos({\frac{2\pi t}{3}}) = \frac{1}{2}e^{\frac{j2\pi t}{3}} + \frac{1}{2}e^{\frac{-j2\pi t}{3}}</math>
  
<math>4sin({\frac{5\pi t}{3}}) = -2je^{\frac{j5\pi t}{3}} + 2je^{\frac{-j5\pi t}{3}}</math>
+
<math>4sin({\frac{5\pi t}{3}}) = -2je^{\frac{j5\pi t}{3}} + 2je^{\frac{-j5\pi t}{3}}</math><br>
 +
 
 +
<math>x(t) = 2 + \frac{1}{2}e^{\frac{j2\pi t}{3}} + \frac{1}{2}e^{\frac{-j2\pi t}{3}} -2je^{\frac{j5\pi t}{3}} + 2je^{\frac{-j5\pi t}{3}}</math>
 +
 
 +
<br>
 +
<math>x(t) = 2 + \frac{1}{2}e^{\frac{2j2\pi t}{6}} + \frac{1}{2}e^{\frac{-2j2\pi t}{6}} -2je^{\frac{j5\2pi t}{6}} + 2je^{\frac{-j5\2pi t}{6}}</math>

Revision as of 16:17, 21 September 2008

CT signal

$ x(t) = 2 + cos({\frac{2\pi t}{3}})+ 4sin({\frac{5\pi t}{3}})\, $

Coefficients

$ cos({\frac{2\pi t}{3}}) = \frac{1}{2}e^{\frac{j2\pi t}{3}} + \frac{1}{2}e^{\frac{-j2\pi t}{3}} $

$ 4sin({\frac{5\pi t}{3}}) = -2je^{\frac{j5\pi t}{3}} + 2je^{\frac{-j5\pi t}{3}} $

$ x(t) = 2 + \frac{1}{2}e^{\frac{j2\pi t}{3}} + \frac{1}{2}e^{\frac{-j2\pi t}{3}} -2je^{\frac{j5\pi t}{3}} + 2je^{\frac{-j5\pi t}{3}} $


$ x(t) = 2 + \frac{1}{2}e^{\frac{2j2\pi t}{6}} + \frac{1}{2}e^{\frac{-2j2\pi t}{6}} -2je^{\frac{j5\2pi t}{6}} + 2je^{\frac{-j5\2pi t}{6}} $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood