Line 6: | Line 6: | ||
**initial given statements copied from Jeff Kubascik | **initial given statements copied from Jeff Kubascik | ||
+ | |||
+ | Since, | ||
+ | |||
+ | <math>\cos(2t) = \frac {e^{i2t} + e^{-i2t}} {2} </math> |
Revision as of 14:23, 19 September 2008
We are told that a system is linear and given inputs
$ \,x_1(t)=e^{2jt}\, $ yields $ \,y_1(t)=te^{-2jt}\, $
$ \,x_2(t)=e^{-2jt}\, $ yields $ \,y_2(t)=te^{2jt}\, $
- initial given statements copied from Jeff Kubascik
Since,
$ \cos(2t) = \frac {e^{i2t} + e^{-i2t}} {2} $