Line 1: Line 1:
Given the definition of [[3.A David Hartmann - Linear System_ECE301Fall2008mboutin| Linear systems]] we know the response to <math>\alpha x1(t) + \beta x2(t) </math>  is  <math> \alpha y1(t)+ \beta y2(t).</math>
+
Given the definition of [[3.A David Hartmann - Linear System_ECE301Fall2008mboutin| Linear systems]] we know the response to <math>\alpha x_1(t) + \beta x_2(t) </math>  is  <math> \alpha y_1(t)+ \beta y_2(t).</math>
  
 
Consider the system:
 
Consider the system:
  
  
          <math>e^{-2jt}\to F ( e^{-2jt} ) \to te^{2jt}</math>
+
<math>e^{-2jt}\to F ( e^{-2jt} ) \to te^{2jt}</math>
  
From the given system:
+
 
 +
From the given system we know
  
 
<math>x(t)\to F( x(t) )\to tx(-t)</math>
 
<math>x(t)\to F( x(t) )\to tx(-t)</math>
  
From Euler's formula
+
Euler's formula allows to rewrite <math>e^{iy} </math> as
<math>e^{iy}=cos{y}+i sin{y}</math>
+
<math>e^{iy}=cos{y}+i*sin{y}</math>
 +
 
 +
Using this we deduct that
 +
x(t) = cos(2t)= <math>\frac{e^{2jt}+e^{-2jt}}{2}</math>
 +
 
 +
and when we plug it into our system we see
 +
<math>\frac{te^{-2jt}+te^{2jt}}{2}=t\frac{e^{-2jt}+e^{2jt}}{2}=tcos(2t)</math>
 +
 
 +
Therefore we can confidently say that our system yields the output y(t) = t*cos(2t) when the input
 +
 
 +
x(t) = cos(2t).

Latest revision as of 14:32, 19 September 2008

Given the definition of Linear systems we know the response to $ \alpha x_1(t) + \beta x_2(t) $ is $ \alpha y_1(t)+ \beta y_2(t). $

Consider the system:


$ e^{-2jt}\to F ( e^{-2jt} ) \to te^{2jt} $


From the given system we know

$ x(t)\to F( x(t) )\to tx(-t) $

Euler's formula allows to rewrite $ e^{iy} $ as $ e^{iy}=cos{y}+i*sin{y} $

Using this we deduct that x(t) = cos(2t)= $ \frac{e^{2jt}+e^{-2jt}}{2} $

and when we plug it into our system we see $ \frac{te^{-2jt}+te^{2jt}}{2}=t\frac{e^{-2jt}+e^{2jt}}{2}=tcos(2t) $

Therefore we can confidently say that our system yields the output y(t) = t*cos(2t) when the input

x(t) = cos(2t).

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch