(New page: Given the definition of Linear systems <math>\alpha x1(t) + \beta x2(t) <\math> is <math> \alpha y1(t)+ \beta y2(t).</math> Consider the following system: <math...)
 
Line 1: Line 1:
 
Given the definition of [[3.A David Hartmann _ECE301Fall2008mboutin| Linear systems]]  
 
Given the definition of [[3.A David Hartmann _ECE301Fall2008mboutin| Linear systems]]  
  
<math>\alpha x1(t) + \beta x2(t) <\math> is <math> \alpha y1(t)+ \beta y2(t).</math>
+
<math>\alpha x1(t) + \beta x2(t) </math> is <math> \alpha y1(t)+ \beta y2(t).</math>
  
 
Consider the following system:
 
Consider the following system:

Revision as of 14:11, 19 September 2008

Given the definition of Linear systems

$ \alpha x1(t) + \beta x2(t) $ is $ \alpha y1(t)+ \beta y2(t). $

Consider the following system: $ e^{2jt}\to system\to te^{-2jt} $


         $ e^{-2jt}\to system\to te^{2jt} $

From the given system:

$ x(t)\to system\to tx(-t) $

From Euler's formula $ e^{iy}=cos{y}+i sin{y} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett