Line 9: | Line 9: | ||
---- | ---- | ||
− | To find the response of the system above we first note that <math>e^{j2t} = cos(2t) + jsin(2t)\! | + | To find the response of the system above we first note that |
+ | |||
+ | <math>e^{j2t} = cos(2t) + jsin(2t)\!</math> and that | ||
+ | <math>e^{-j2t} = cos(2t) - jsin(2t)\!</math> |
Revision as of 09:11, 19 September 2008
Given:
For a linear system we have:
$ e^{j2t} \rightarrow [system] \rightarrow te^{-j2t}\! $
$ e^{-j2t} \rightarrow [system] \rightarrow te^{j2t}\! $
To find the response of the system above we first note that
$ e^{j2t} = cos(2t) + jsin(2t)\! $ and that $ e^{-j2t} = cos(2t) - jsin(2t)\! $