m
Line 1: Line 1:
<math>e^{2jt} \rightarrow </math><box>system</box> \rightarrow te^{-2jt}\!</math><br>
+
----
<math>e^{-2jt} \rightarrow system \rightarrow te^{2jt}\!</math><br>
+
'''Given:'''
 +
 
 +
For a linear system we have:
 +
 
 +
<math>e^{j2t} \rightarrow [system] \rightarrow te^{-j2t}\!</math><br>
 +
<math>e^{-j2t} \rightarrow [system] \rightarrow te^{j2t}\!</math><br>
 +
 
 +
----
 +
 
 +
To find the response of the system above we first note that <math>e^{j2t} = cos(2t) + jsin(2t)

Revision as of 09:09, 19 September 2008


Given:

For a linear system we have:

$ e^{j2t} \rightarrow [system] \rightarrow te^{-j2t}\! $
$ e^{-j2t} \rightarrow [system] \rightarrow te^{j2t}\! $


To find the response of the system above we first note that $ e^{j2t} = cos(2t) + jsin(2t) $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett