m |
|||
Line 1: | Line 1: | ||
− | <math>e^{ | + | ---- |
− | <math>e^{- | + | '''Given:''' |
+ | |||
+ | For a linear system we have: | ||
+ | |||
+ | <math>e^{j2t} \rightarrow [system] \rightarrow te^{-j2t}\!</math><br> | ||
+ | <math>e^{-j2t} \rightarrow [system] \rightarrow te^{j2t}\!</math><br> | ||
+ | |||
+ | ---- | ||
+ | |||
+ | To find the response of the system above we first note that <math>e^{j2t} = cos(2t) + jsin(2t) |
Revision as of 09:09, 19 September 2008
Given:
For a linear system we have:
$ e^{j2t} \rightarrow [system] \rightarrow te^{-j2t}\! $
$ e^{-j2t} \rightarrow [system] \rightarrow te^{j2t}\! $
To find the response of the system above we first note that $ e^{j2t} = cos(2t) + jsin(2t) $