(New page: First, rewrite <math> cos(2t) \,</math> as a complex exponentional :<br> :<math> cos(2t) =\frac{[e^{j2x}+e^{-j2x}]}{2}</math><br> Then, applying the system to the exponentials gives respon...)
 
 
Line 1: Line 1:
 
First, rewrite <math> cos(2t) \,</math> as a complex exponentional :<br>
 
First, rewrite <math> cos(2t) \,</math> as a complex exponentional :<br>
 
:<math> cos(2t) =\frac{[e^{j2x}+e^{-j2x}]}{2}</math><br>
 
:<math> cos(2t) =\frac{[e^{j2x}+e^{-j2x}]}{2}</math><br>
Then, applying the system to the exponentials gives response <math> y(t)\!</math>:<br>
+
Then, applying the system gives response <math> y(t)\!</math>:<br>
 
:<math> y(t) = \frac{[te^{-j2x}+te^{j2x}]}{2}</math>, (because the system is linear, the <math>\frac{1}{2}</math> factor remains)<br>
 
:<math> y(t) = \frac{[te^{-j2x}+te^{j2x}]}{2}</math>, (because the system is linear, the <math>\frac{1}{2}</math> factor remains)<br>
 
Finally, factoring out the <math> t\!</math> and simplifying back into a sinusoid function yields:
 
Finally, factoring out the <math> t\!</math> and simplifying back into a sinusoid function yields:
 
:<math> y(t) = tcos(2t)\!</math>
 
:<math> y(t) = tcos(2t)\!</math>

Latest revision as of 06:41, 19 September 2008

First, rewrite $ cos(2t) \, $ as a complex exponentional :

$ cos(2t) =\frac{[e^{j2x}+e^{-j2x}]}{2} $

Then, applying the system gives response $ y(t)\! $:

$ y(t) = \frac{[te^{-j2x}+te^{j2x}]}{2} $, (because the system is linear, the $ \frac{1}{2} $ factor remains)

Finally, factoring out the $ t\! $ and simplifying back into a sinusoid function yields:

$ y(t) = tcos(2t)\! $

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison