(New page: Provided that: : <math> e^{j2t} </math>----------> System ----------> <math> te^{-2jt} </math><br> : <math> e^{-j2t} </math>----------> System ----------> <math> te^{2jt} </math><br>)
 
Line 1: Line 1:
Provided that:
+
Provided that: <br>
: <math> e^{j2t} </math>----------> System ----------> <math> te^{-2jt} </math><br>
+
(1) <math> e^{j2t}\ </math> ----------> System ----------> <math> te^{-2jt}\ </math><br>
: <math> e^{-j2t} </math>----------> System ----------> <math> te^{2jt} </math><br>
+
(2) <math> e^{-j2t}\ </math>----------> System ----------> <math> te^{2jt}\ </math><br>
 +
(3) The System is Linear. <br>
 +
 
 +
The following should hold true:
 +
<math> e^{j2t} + e^{-j2t}\ </math> ----------> System -----------> <math> te^{-2jt} + te^{2jt}\ </math><br><br>
 +
 
 +
The Key to approach this problem is: What is <math> {e^{j2t} + e^{-j2t}\ over 2} </math>
 +
 
 +
: <math>\cos x = \mathrm{Re}\{e^{ix}\} ={e^{ix} + e^{-ix} \over 2}</math>

Revision as of 06:02, 19 September 2008

Provided that:
(1) $ e^{j2t}\ $ ----------> System ----------> $ te^{-2jt}\ $
(2) $ e^{-j2t}\ $----------> System ----------> $ te^{2jt}\ $
(3) The System is Linear.

The following should hold true: $ e^{j2t} + e^{-j2t}\ $ ----------> System -----------> $ te^{-2jt} + te^{2jt}\ $

The Key to approach this problem is: What is $ {e^{j2t} + e^{-j2t}\ over 2} $

$ \cos x = \mathrm{Re}\{e^{ix}\} ={e^{ix} + e^{-ix} \over 2} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett