Line 14: Line 14:
 
Then
 
Then
  
\cos{2t} \to t \frac{\exp^{-2jt} + \exp{2jt}}{2} = t \cos{t} </math>
+
<math> \cos{2t} \to t \frac{\exp^{-2jt} + \exp{2jt}}{2} = t \cos{t} </math>

Revision as of 02:17, 19 September 2008

Through the system, the following transformations are made:

$ e^{2jt} \to t e^{-2jt} $

$ e^{2jt} \to t e^{-2jt} $

By observation, we know the system multiplies by t and is time reversing.

Given that:

$ \cos{t} = \frac{\exp^{jt} + \exp{-jt}}{2} $


Then

$ \cos{2t} \to t \frac{\exp^{-2jt} + \exp{2jt}}{2} = t \cos{t} $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang