Line 14: | Line 14: | ||
Then | Then | ||
− | \cos{2t} \to t \frac{\exp^{-2jt} + \exp{2jt}}{2} = t \cos{t} </math> | + | <math> \cos{2t} \to t \frac{\exp^{-2jt} + \exp{2jt}}{2} = t \cos{t} </math> |
Revision as of 02:17, 19 September 2008
Through the system, the following transformations are made:
$ e^{2jt} \to t e^{-2jt} $
$ e^{2jt} \to t e^{-2jt} $
By observation, we know the system multiplies by t and is time reversing.
Given that:
$ \cos{t} = \frac{\exp^{jt} + \exp{-jt}}{2} $
Then
$ \cos{2t} \to t \frac{\exp^{-2jt} + \exp{2jt}}{2} = t \cos{t} $