(New page: Through the system, the following transformations are made: <math>e^{2jt} \to t e^{-2jt}</math> <math>e^{2jt} \to t e^{-2jt}</math>)
 
Line 2: Line 2:
  
 
<math>e^{2jt} \to t e^{-2jt}</math>
 
<math>e^{2jt} \to t e^{-2jt}</math>
 +
 
<math>e^{2jt} \to t e^{-2jt}</math>
 
<math>e^{2jt} \to t e^{-2jt}</math>
 +
 +
By observation, we know the system multiplies by t and is time reversing.
 +
 +
Given that:
 +
 +
<math> \cos{t} = \frac{\exp^{jt} + \exp{-jt}}{2}</math>
 +
 +
 +
Then
 +
 +
\cos{2t} \to t \frac{\exp^{-2jt} + \exp{2jt}}{2} = t \cos{t} </math>

Revision as of 02:17, 19 September 2008

Through the system, the following transformations are made:

$ e^{2jt} \to t e^{-2jt} $

$ e^{2jt} \to t e^{-2jt} $

By observation, we know the system multiplies by t and is time reversing.

Given that:

$ \cos{t} = \frac{\exp^{jt} + \exp{-jt}}{2} $


Then

\cos{2t} \to t \frac{\exp^{-2jt} + \exp{2jt}}{2} = t \cos{t} </math>

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison