Line 8: Line 8:
  
 
  <math>\ cos(2t) = \frac{e^{2jt} + e^{-2jt}}{2} </math>
 
  <math>\ cos(2t) = \frac{e^{2jt} + e^{-2jt}}{2} </math>
 +
 +
From the first two statments we can deduce that the general behavior of the system is
 +
 +
<math>/ x(t) \rightarrow SYSTEM \rightarrow ty(-t)</math>

Revision as of 23:43, 18 September 2008

We know that:

$ \ e^{2jt} \rightarrow SYSTEM \rightarrow te^{-2jt} $
$ \ e^{-2jt} \rightarrow SYSTEM \rightarrow te^{2jt} $

We also know that the response for

$ \ cos(2t) = \frac{e^{2jt} + e^{-2jt}}{2}  $

From the first two statments we can deduce that the general behavior of the system is

$ / x(t) \rightarrow SYSTEM \rightarrow ty(-t) $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett