Line 1: Line 1:
 
[[Homework 3_ECE301Fall2008mboutin]] - [[HW3.A Allen Humphreys_ECE301Fall2008mboutin|'''A''']] - [[HW3.B Allen Humphreys_ECE301Fall2008mboutin|'''B''']] - [[HW3.C Allen Humphreys_ECE301Fall2008mboutin|'''C''']]
 
[[Homework 3_ECE301Fall2008mboutin]] - [[HW3.A Allen Humphreys_ECE301Fall2008mboutin|'''A''']] - [[HW3.B Allen Humphreys_ECE301Fall2008mboutin|'''B''']] - [[HW3.C Allen Humphreys_ECE301Fall2008mboutin|'''C''']]
  
We know that the system is linear, therefore, we can conclude the following about the given information.
+
We know that the system is linear, therefore, we can sum the inputs to equal the sum of outputs:
  
: <math>x_{1}(t) = e^{2\times jt}</math> and <math>x_{2}(t) = e^{-2\times jt}</math>
+
The input is
 +
: <math>x_{c}(t) = e^{2\times jt} + e^{-2\times jt} </math>
  
 +
and the corresponding output is
 +
:<math>y_{c}(t) = t \times e^{-2jt} + t \times e^{2jt}</math>
  
: <math>y_{1}(t) = t \times e^{-2jt}</math> and <math>y_{2}(t) = t \times e^{2jt}</math>
+
We know by Euler's formula:
  
By linearity,
+
: <math>\cos 2t = {e^{2jt} + e^{-2jt} \over 2}</math>
: <math> x_{1}+x_{2}=y_{1}+y_{2} </math>. Also,
+
: <math>x_{3} = x_{1} + x_{2}</math> and
+
: <math>y_{3} = t\times y_{1} + t\times y_{2}</math>.
+
  
By euler's formula:
+
Finally, by the multiplication property of linear systems:
  
: <math>\cos x = {e^{jx} + e^{-jx} \over 2}</math>
+
The input,
 +
:<math>   {x_{c}(t) \over 2} = \cos 2t = {e^{2\times jt} + e^{-2\times jt} \over 2} </math>
 +
 
 +
will yield the output:
 +
:<math>{y_{c}(t) \over 2} = {t e^{-2jt} + t e^{2jt} \over 2}</math>

Latest revision as of 13:29, 19 September 2008

Homework 3_ECE301Fall2008mboutin - A - B - C

We know that the system is linear, therefore, we can sum the inputs to equal the sum of outputs:

The input is

$ x_{c}(t) = e^{2\times jt} + e^{-2\times jt} $

and the corresponding output is

$ y_{c}(t) = t \times e^{-2jt} + t \times e^{2jt} $

We know by Euler's formula:

$ \cos 2t = {e^{2jt} + e^{-2jt} \over 2} $

Finally, by the multiplication property of linear systems:

The input,

$ {x_{c}(t) \over 2} = \cos 2t = {e^{2\times jt} + e^{-2\times jt} \over 2} $

will yield the output:

$ {y_{c}(t) \over 2} = {t e^{-2jt} + t e^{2jt} \over 2} $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn