Line 3: Line 3:
 
We know that the system is linear, therefore, we can conclude the following about the given information.
 
We know that the system is linear, therefore, we can conclude the following about the given information.
  
<math>x_{1}(t) = e^{2\times jt}</math> and <math>x_{2}(t) = e^{-2\times jt}</math>
+
: <math>x_{1}(t) = e^{2\times jt}</math> and <math>x_{2}(t) = e^{-2\times jt}</math>
  
  
<math>y_{1}(t) = t \times e^{-2jt}</math> and <math>y_{2}(t) = t \times e^{2jt}</math>
+
: <math>y_{1}(t) = t \times e^{-2jt}</math> and <math>y_{2}(t) = t \times e^{2jt}</math>
  
By linearity,
+
By linearity,  
 +
: <math> x_{1}+x_{2}=y_{1}+y_{2} </math>. Also,
 +
: <math>x_{3} = x_{1} + x_{2}</math> and
 +
: <math>y_{3} = t\times y_{1} + t\times y_{2}</math>.
 +
 
 +
By euler's formula:
 +
 
 +
: <math>\cos x = {e^{jx} + e^{-jx} \over 2}</math>

Revision as of 18:51, 18 September 2008

Homework 3_ECE301Fall2008mboutin - A - B - C

We know that the system is linear, therefore, we can conclude the following about the given information.

$ x_{1}(t) = e^{2\times jt} $ and $ x_{2}(t) = e^{-2\times jt} $


$ y_{1}(t) = t \times e^{-2jt} $ and $ y_{2}(t) = t \times e^{2jt} $

By linearity,

$ x_{1}+x_{2}=y_{1}+y_{2} $. Also,
$ x_{3} = x_{1} + x_{2} $ and
$ y_{3} = t\times y_{1} + t\times y_{2} $.

By euler's formula:

$ \cos x = {e^{jx} + e^{-jx} \over 2} $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett