(New page: Homework 3 - '''A''' - '''B''' - '''C''') |
|||
Line 1: | Line 1: | ||
[[Homework 3_ECE301Fall2008mboutin]] - [[HW3.A Allen Humphreys_ECE301Fall2008mboutin|'''A''']] - [[HW3.B Allen Humphreys_ECE301Fall2008mboutin|'''B''']] - [[HW3.C Allen Humphreys_ECE301Fall2008mboutin|'''C''']] | [[Homework 3_ECE301Fall2008mboutin]] - [[HW3.A Allen Humphreys_ECE301Fall2008mboutin|'''A''']] - [[HW3.B Allen Humphreys_ECE301Fall2008mboutin|'''B''']] - [[HW3.C Allen Humphreys_ECE301Fall2008mboutin|'''C''']] | ||
+ | |||
+ | We know that the system is linear, therefore, we can conclude the following about the given information. | ||
+ | |||
+ | <math>x_{1}(t) = e^{2\times jt}</math> and <math>x_{2}(t) = e^{-2\times jt}</math> | ||
+ | |||
+ | |||
+ | <math>y_{1}(t) = t \times e^{-2jt}</math> and <math>y_{2}(t) = t \times e^{2jt}</math> | ||
+ | |||
+ | By linearity, |
Revision as of 18:30, 18 September 2008
Homework 3_ECE301Fall2008mboutin - A - B - C
We know that the system is linear, therefore, we can conclude the following about the given information.
$ x_{1}(t) = e^{2\times jt} $ and $ x_{2}(t) = e^{-2\times jt} $
$ y_{1}(t) = t \times e^{-2jt} $ and $ y_{2}(t) = t \times e^{2jt} $
By linearity,