Line 7: Line 7:
 
Answer:
 
Answer:
  
<math>cos(2t)\!</math> can also be written as <math>(e^{2jt} + e^{-2jt})/2\!</math> so therefore the linear system's response to <math>cos(2t)\!</math> is <math>(e^{-2jt} + e^{2jt})/2\!</math> which would just be <math>cos(2t)\!</math>.
+
<math>cos(2t)\!</math> can also be written as <math>(e^{2jt} + e^{-2jt})/2\!</math> which can also be written as <math>1/2*[(e^{2jt} + e^{-2jt})]\!</math> so therefore the linear system's response  is <math>t/2*[(e^{-2jt} + e^{2jt})]\!</math> which equals <math>t/2*cos(2t)\!</math>.
 +
 
 +
(Note:  The star in this case is the multiplication operator, not the convolution operator)

Revision as of 17:17, 18 September 2008

Basics of Linearity

Given:

$ e^{2jt}\! $ through a system produces $ e^{-2jt}\! $, and $ e^{-2jt}\! $ produces $ e^{2jt}\! $. what is the output of $ cos(2t)\! $

Answer:

$ cos(2t)\! $ can also be written as $ (e^{2jt} + e^{-2jt})/2\! $ which can also be written as $ 1/2*[(e^{2jt} + e^{-2jt})]\! $ so therefore the linear system's response is $ t/2*[(e^{-2jt} + e^{2jt})]\! $ which equals $ t/2*cos(2t)\! $.

(Note: The star in this case is the multiplication operator, not the convolution operator)

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett