(New page: <math>\cos{2t} = \frac{e^{2jt} - e^{-2jt}}{2}</math> Since we know, <math>e^{2jt} \Longrightarrow System \Longrightarrow te^{-2jt}</math> and <math>e^{-2jt} \Longrightarrow System \Lon...)
 
Line 1: Line 1:
<math>\cos{2t} = \frac{e^{2jt} - e^{-2jt}}{2}</math>
+
<math>\cos{2t} = \frac{e^{2jt} + e^{-2jt}}{2}</math>
  
 
Since we know,
 
Since we know,
Line 11: Line 11:
 
then
 
then
  
<math>\cos{2t} \Longrightarrow System \Longrightarrow \frac{te^{-2jt} - te^{2jt}}{2} = t\cos{2t}</math>
+
<math>\cos{2t} \Longrightarrow System \Longrightarrow \frac{te^{-2jt} + te^{2jt}}{2} = t\cos{2t}</math>

Revision as of 12:41, 18 September 2008

$ \cos{2t} = \frac{e^{2jt} + e^{-2jt}}{2} $

Since we know,

$ e^{2jt} \Longrightarrow System \Longrightarrow te^{-2jt} $

and

$ e^{-2jt} \Longrightarrow System \Longrightarrow te^{2jt} $

then

$ \cos{2t} \Longrightarrow System \Longrightarrow \frac{te^{-2jt} + te^{2jt}}{2} = t\cos{2t} $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett