Line 1: Line 1:
 
==Part B: The basics of linearity==
 
==Part B: The basics of linearity==
  
<math>e^{2jt} \rightarrow linear-system \rightarrow te^{-2jt} </math>
+
<math>x_1(t) = e^{2jt} \rightarrow linear-system \rightarrow y_1(t) = te^{-2jt} </math>
  
<math>e^{-2jt} \rightarrow linear-system \rightarrow te^{2jt} </math>
+
<math>x_2(t) = e^{-2jt} \rightarrow linear-system \rightarrow y_2(t) = te^{2jt} </math>
  
 
The input, cos(2t) is equal to <math>\frac{1}{2}(e^{j2t} + e^{-j2t})</math>
 
The input, cos(2t) is equal to <math>\frac{1}{2}(e^{j2t} + e^{-j2t})</math>
  
From the properties of a linear system <math>ax_1(t) + bx_2(t) \rightarrow linear system \rightarrow ay_1(t) + by_2(t)</math>
+
From the properties of a linear system <math>ax_1(t) + bx_2(t) \rightarrow linear-system \rightarrow ay_1(t) + by_2(t)</math>,
 +
 
 +
The response to cos(2t) is <math>\frac{1}{2}te^{-2jt} + \frac{1}{2}te^{2jt}</math>

Revision as of 08:08, 18 September 2008

Part B: The basics of linearity

$ x_1(t) = e^{2jt} \rightarrow linear-system \rightarrow y_1(t) = te^{-2jt} $

$ x_2(t) = e^{-2jt} \rightarrow linear-system \rightarrow y_2(t) = te^{2jt} $

The input, cos(2t) is equal to $ \frac{1}{2}(e^{j2t} + e^{-j2t}) $

From the properties of a linear system $ ax_1(t) + bx_2(t) \rightarrow linear-system \rightarrow ay_1(t) + by_2(t) $,

The response to cos(2t) is $ \frac{1}{2}te^{-2jt} + \frac{1}{2}te^{2jt} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett