(Can Eve decrypt it without finding the inverse of the encryption matrix?)
Line 24: Line 24:
  
  
Matlab will tell us that the resultant matrix, the encryption matrix, is:<br>
+
Matlab will tell us that the encryption matrix, is:<br>
 
<math>
 
<math>
 
\begin{bmatrix}
 
\begin{bmatrix}
Line 34: Line 34:
  
  
Now, find inverse of the encryption matrix and multiply it by the (column) vector in order to find the secret code:<br>
+
Now, find inverse of the encryption matrix and multiply it by the sample code in order to find the secret code:<br>
  
 
The inverse of the "secret" matrix:<br>
 
The inverse of the "secret" matrix:<br>

Revision as of 07:45, 18 September 2008

Homework3 Part C



How can Bob decode the message?


Bob can decode the message by breaking the message into segments of three,
and then multiplying each 3 bit segment by the inverse of the encryption vector.

Can Eve decrypt it without finding the inverse of the encryption matrix?


No, Eve would have to find the inverse of the matrix in order to decode the messages.
However, She does have enough information to determine the encryption vector.
$ \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix} $ -1


Matlab will tell us that the encryption matrix, is:
$ \begin{bmatrix} -\frac{2}{3} & 0 & \frac{2}{3} \\ 0 & 1 & 0 \\ 4 & 0 & -1 \\ \end{bmatrix} $


Now, find inverse of the encryption matrix and multiply it by the sample code in order to find the secret code:

The inverse of the "secret" matrix:
$ \begin{bmatrix} \frac{1}{2} & 0 & \frac{1}{3} \\ 0 & 1 & 0 \\ 2 & 0 & \frac{1}{3} \\ \end{bmatrix} $



$ \begin{bmatrix} \frac{1}{2} & 0 & \frac{1}{3} \\ 0 & 1 & 0 \\ 2 & 0 & \frac{1}{3} \\ \end{bmatrix} * \begin{bmatrix} 2\\ 23\\ 3 \\ \end{bmatrix} = \begin{bmatrix} 2\\ 23\\ 5\\ \end{bmatrix} $



The encrypted message is: (B, W, E)... which is actually not really a message, just a jumble of letters...

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett