(→Basics of Linearity) |
(→Basics of Linearity) |
||
Line 7: | Line 7: | ||
<math> e^{2jt} --> Sys --> t*e^{-2jt} </math> | <math> e^{2jt} --> Sys --> t*e^{-2jt} </math> | ||
+ | |||
+ | and asked to find the response to find the response to cos(2t). | ||
+ | |||
+ | |||
+ | '''Solution:''' | ||
+ | Using the properties of cosine we can convert cos(2t) to an exponential function. | ||
+ | |||
+ | cos(2t) = <math>\frac{e^{2tj}+e^{-2tj}}{2}</math> |
Revision as of 07:15, 18 September 2008
Basics of Linearity
Definition of Linearity: For any constants a and b (that are complext numbers), and inputs x1(t) and x2(t) which yield outputs y1(t) and y2(t),
$ a * x1(t) + b * x2(t) ---> Sys ---> a * y1(t) + b * y2(t) $
We are given a linear system that behaves as follows,
$ e^{2jt} --> Sys --> t*e^{-2jt} $
and asked to find the response to find the response to cos(2t).
Solution:
Using the properties of cosine we can convert cos(2t) to an exponential function.
cos(2t) = $ \frac{e^{2tj}+e^{-2tj}}{2} $