(Basics of Linearity)
(Basics of Linearity)
Line 11: Line 11:
 
is  
 
is  
 
<math>\ \dfrac{t e^{-2 i x} + t e^{2 i x}}{2} </math>
 
<math>\ \dfrac{t e^{-2 i x} + t e^{2 i x}}{2} </math>
 +
but
 +
:<math>e^{2 x i}=\cos 2x + i \sin 2x \, </math> and <math>e^{-2 x i}=\cos 2x - i \sin 2x \, </math> so the response is
 +
 
:<math>\dfrac{t e^{-2 i x} + t e^{2 i x}}{2} = t\cos 2t </math>
 
:<math>\dfrac{t e^{-2 i x} + t e^{2 i x}}{2} = t\cos 2t </math>

Revision as of 07:07, 18 September 2008

Basics of Linearity

Given

$ e^{2 x i}=t e^{-2 x i}\, $
$ e^{-2 x i}=t e^{2 x i}\, $
$ \cos x = \dfrac{e^{i x}+e^{-i x}}{2} $
$ \cos 2x = \dfrac{e^{2 i x}+e^{-2 i x}}{2} $

The Systems response to $ \cos 2x $ is $ \ \dfrac{t e^{-2 i x} + t e^{2 i x}}{2} $ but

$ e^{2 x i}=\cos 2x + i \sin 2x \, $ and $ e^{-2 x i}=\cos 2x - i \sin 2x \, $ so the response is
$ \dfrac{t e^{-2 i x} + t e^{2 i x}}{2} = t\cos 2t $

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison