Line 18: Line 18:
  
 
<math> 1/2 * t * (\cos(-2t) + i\sin(-2t)) + 1/2 * t * (\cos(2t) + i\sin(2t)) </math>
 
<math> 1/2 * t * (\cos(-2t) + i\sin(-2t)) + 1/2 * t * (\cos(2t) + i\sin(2t)) </math>
 +
 +
Since <math>sin(-t)=-sin(t) and cos(-t) = cos(t)</math> we can simplify further:
 +
 +
<math> 1/2*t*(\cos(2t) -i\sin(2t)) + 1/2*t*(\cos(2t)+i\sin(2t)) = t\cos(2t)</math>

Revision as of 18:02, 17 September 2008

A linear system’s response to $ e^{2jt} $ is $ t*e^{-2jt} $, and its response to $ e^{-2jt} $ is $ t*e^{2jt} $.

What is the system’s response to $ \cos(2t) $?


Well, if we convert $ \cos(2t) $ using euler's formula, we get $ 1/2 * e^{2jt} + 1/2 * e^{-2jt} $.


Since the system is linear, we can assume that with constants of 1/2,

$ 1/2 * x_1(t) + 1/2*x_2(t) => 1/2*y_1(t)+1/2*y_2(t) $

So our result is

$ 1/2 * t * e^{-2jt} + 1/2 * t * e^{2jt} $

Simplifying this yields

$ 1/2 * t * (\cos(-2t) + i\sin(-2t)) + 1/2 * t * (\cos(2t) + i\sin(2t)) $

Since $ sin(-t)=-sin(t) and cos(-t) = cos(t) $ we can simplify further:

$ 1/2*t*(\cos(2t) -i\sin(2t)) + 1/2*t*(\cos(2t)+i\sin(2t)) = t\cos(2t) $

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010