Line 27: Line 27:
 
<br>
 
<br>
 
Thus we have
 
Thus we have
A+4G=2 <br>
+
A+C=2 <br>
B+4H=0 <br>
+
B=0 <br>
C+4I=0 <br>
+
4A+C=0 <br>
D=0 <br>
+
D+F=0 <br>
 
E=1 <br>
 
E=1 <br>
F=0 <br>
+
4D+F=0 <br>
A+G=0 <br>
+
G+I=0 <br>
B+H=0 <br>
+
H=0 <br>
C+I=3 <br>
+
4G+I=3 <br>
 
and so
 
and so
 
D=0 <br>
 
D=0 <br>

Revision as of 14:24, 18 September 2008

1. Bob needs to calculate the inverse of the secret matrix, and multiply it by the code given by Alice to get a vector. Then replaces each three entries by its corresponding letter in the alphabet.

2.Eve can get the secret matrix through calculation.

$ \begin{bmatrix} A & B & C \\ D & E & F \\ G & H & I \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} $


Thus we have A+C=2
B=0
4A+C=0
D+F=0
E=1
4D+F=0
G+I=0
H=0
4G+I=3
and so D=0
E=1
F=0
A=B=-2/3
G=H=2/3
I=-1
C=4
i.e.


$ \begin{bmatrix} -\frac{2}{3} & -\frac{2}{3} & 4 \\ 0 & 1 & 0 \\ \frac{2}{3} & \frac{2}{3} & -1 \end{bmatrix} $

3. The inverse matrix is

$ \begin{bmatrix} \frac{1}{2} & -1 & 2 \\ 0 & 1 & 0 \\ \frac{1}{3} & 0 & \frac{1}{3} \end{bmatrix} $

So(2,23,3) --> (1,23,1) --> AWE

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn