(→System Response) |
(→System Response) |
||
Line 6: | Line 6: | ||
Since the system is a LTI system, we have | Since the system is a LTI system, we have | ||
− | Output = Response | + | Output = Response of <math>\frac{e^{2jt}+e^{-2jt}}{2}\,</math> |
− | = Response of | + | = Response of <math>\frac{e^{2jt}\,</math> + Response of <math>\frac{e^{-2jt}\,</math> |
<math>=\frac{te^{2jt}+te^{-2jt}}{2}\,</math> (derive from given conditions) | <math>=\frac{te^{2jt}+te^{-2jt}}{2}\,</math> (derive from given conditions) |
Revision as of 08:21, 18 September 2008
System Response
Based on the Euler Formula, $ \cos(2t)\,= \frac{e^{2jt}+e^{-2jt}}{2}\, $.
We already had the response of $ e^{2jt}\, $ is $ te^{-2jt}\, $ and the response of $ e^{-2jt}\, $ is $ te^{2jt}\, $.
Since the system is a LTI system, we have
Output = Response of $ \frac{e^{2jt}+e^{-2jt}}{2}\, $
= Response of $ \frac{e^{2jt}\, $ + Response of $ \frac{e^{-2jt}\, $
$ =\frac{te^{2jt}+te^{-2jt}}{2}\, $ (derive from given conditions)
$ =t\frac{e^{2jt}+e^{-2jt}}{2}\, $
$ =t\cos(2t)\, $