(Formal Definition of an Unstable System)
Line 16: Line 16:
  
  
that yields a unbounded output <math>\,y(t)\,</math>.
+
that yields an unbounded output <math>\,y(t)\,</math>.
  
 
( there is no <math>\,\delta \in \mathbb{R}\,</math> such that <math>\,|y(t)|<\delta , \forall t\in\mathbb{R}\,</math> )
 
( there is no <math>\,\delta \in \mathbb{R}\,</math> such that <math>\,|y(t)|<\delta , \forall t\in\mathbb{R}\,</math> )

Revision as of 14:56, 17 September 2008

Formal Definition of a Stable System

A system is called stable if for any bounded input $ \,x(t)\, $

( $ \,\exists \epsilon \in \mathbb{R}\, $ such that $ \,|x(t)|<\epsilon , \forall t\in\mathbb{R}\, $ )


yields a bounded output $ \,y(t)\, $.

( $ \,\exists \delta \in \mathbb{R}\, $ such that $ \,|y(t)|<\delta , \forall t\in\mathbb{R}\, $ )

Formal Definition of an Unstable System

A system is called unstable if there exists a bounded input $ \,x(t)\, $

( $ \,\exists \epsilon \in \mathbb{R}\, $ such that $ \,|x(t)|<\epsilon , \forall t\in\mathbb{R}\, $ )


that yields an unbounded output $ \,y(t)\, $.

( there is no $ \,\delta \in \mathbb{R}\, $ such that $ \,|y(t)|<\delta , \forall t\in\mathbb{R}\, $ )

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood