Line 7: Line 7:
 
For any <math>x_{1}(t) \; \rightarrow \; y_{1}(t)</math> and <math>x_{2}(t) \; \rightarrow \; y_{2}(t)</math>
 
For any <math>x_{1}(t) \; \rightarrow \; y_{1}(t)</math> and <math>x_{2}(t) \; \rightarrow \; y_{2}(t)</math>
  
\begin{verbatim}
+
\indent and any complex constants <math>a</math> and <math>b</math>
    and any complex constants <math>a</math> and <math>b</math>
+
 
\end{verbatim}
+
  
 
then
 
then
  
 
<math>ax_{1}(t)+bx_{2}(t)\rightarrow</math>
 
<math>ax_{1}(t)+bx_{2}(t)\rightarrow</math>

Revision as of 20:06, 16 September 2008

Problem

A linear system’s response to $ e^{2jt} $ is $ te^{-2jt} $, and its response to $ e^{-2jt} $ is $ te^{2jt} $. What is the system’s response to $ cos(2t) $?

Solution

If the system is linear, then the following is true:

For any $ x_{1}(t) \; \rightarrow \; y_{1}(t) $ and $ x_{2}(t) \; \rightarrow \; y_{2}(t) $

\indent and any complex constants $ a $ and $ b $


then

$ ax_{1}(t)+bx_{2}(t)\rightarrow $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva