(Invertible Systems)
(Invertible Systems)
Line 1: Line 1:
== Invertible Systems ==
+
== Time Invariant Systems ==
 
   
 
   
A system is invertible if distinct inputs yield distinct outputs.
+
A system is time invariant if for any function x(t) a time shift of the function x(t-t0) the output function y(t) is time shifted in the same manner, y(t-t0).
  
Invertible System:
 
 
y(t) = <math>\frac{3*x(t) + 8}{1}</math>
 
 
x(t) = <math>\frac{y(t) - 8}{3}</math>
 
 
x(t) -> |Sys 1| -> y(t) -> |Sys 2| -> x(t)
 
 
The two equations are inverses of each other.
 
  
Noninvertible System:
+
A system is time variant if this time shift is not present, or is distorted in the output function.
+
y(t) = <math>t^4</math>
+
 
+
x(t) = <math>t</math>    ->    |Sys|    ->    y(t) = <math>t^4</math>
+
 
+
x(t) = <math>-t</math>    ->    |Sys|    ->    y(t) = <math>t^4</math>
+
+
The System is not invertible because for a given set of inputs you cannot differentiate which of the output will result.
+

Revision as of 12:33, 16 September 2008

Time Invariant Systems

A system is time invariant if for any function x(t) a time shift of the function x(t-t0) the output function y(t) is time shifted in the same manner, y(t-t0).


A system is time variant if this time shift is not present, or is distorted in the output function.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett