(Invertible Systems)
(Invertible Systems)
Line 3: Line 3:
 
A system is invertible if distinct inputs yield distinct outputs.
 
A system is invertible if distinct inputs yield distinct outputs.
  
Invertible System:
+
Invertible System:
  
y(t) = <math>\frac{3*x(t) + 8}{1}</math>
+
y(t) = <math>\frac{3*x(t) + 8}{1}</math>
  
x(t) = <math>\frac{y(t) - 8}{3}</math>
+
x(t) = <math>\frac{y(t) - 8}{3}</math>
  
x(t) -> |Sys 1| -> y(t) -> |Sys 2| -> x(t)
+
x(t) -> |Sys 1| -> y(t) -> |Sys 2| -> x(t)
  
The two equations are inverses of each other.
+
The two equations are inverses of each other.
  
Noninvertible System:
+
Noninvertible System:
  
y(t) = <math>t^4</math>
+
y(t) = <math>t^4</math>
 
+
x(t) = <math>t</math>    ->    |Sys|    ->    y(t) = <math>t^4</math>
+
 
   
 
   
x(t) = <math>-t</math>    ->    |Sys|    ->    y(t) = <math>t^4</math>
+
x(t) = <math>t</math>    ->    |Sys|    ->    y(t) = <math>t^4</math>
 +
 
 +
x(t) = <math>-t</math>    ->    |Sys|    ->    y(t) = <math>t^4</math>
 +
 
 +
The System is not invertible because for a given set of inputs you cannot differentiate which of the output will result.

Revision as of 12:23, 16 September 2008

Invertible Systems

A system is invertible if distinct inputs yield distinct outputs.

Invertible System:
y(t) = $ \frac{3*x(t) + 8}{1} $
x(t) = $ \frac{y(t) - 8}{3} $
x(t) -> |Sys 1| -> y(t) -> |Sys 2| -> x(t)
The two equations are inverses of each other.
Noninvertible System:
y(t) = $ t^4 $

x(t) = $ t $     ->     |Sys|     ->     y(t) = $ t^4 $
 
x(t) = $ -t $    ->     |Sys|     ->     y(t) = $ t^4 $
The System is not invertible because for a given set of inputs you cannot differentiate which of the output will result.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett