(New page: ==Part C: Application of linearity==)
 
 
Line 1: Line 1:
 
==Part C: Application of linearity==
 
==Part C: Application of linearity==
 +
== Part 1 ==
 +
 +
Bob can decrypt the message by using the inverse of the encrypted matrix.
 +
 +
== Part 2 ==
 +
 +
No,I don't think so. But I looked at some other answers on the homework page, some do think differently. I will stick to the "no".
 +
 +
== Part 3 ==
 +
 +
This is how we get the message.
 +
<math>
 +
\begin{bmatrix}
 +
a & b & c \\
 +
d & e & f \\
 +
g & h & i
 +
\end{bmatrix}
 +
x
 +
\begin{bmatrix}
 +
1 & 0 & 4 \\
 +
0 & 1 & 0 \\
 +
1 & 0 & 1
 +
\end{bmatrix}
 +
= \begin{bmatrix}
 +
2 & 0 & 0 \\
 +
0 & 1 & 0 \\
 +
0 & 0 & 3
 +
\end{bmatrix}</math>
 +
 +
<math>
 +
\begin{bmatrix}
 +
2 & 0 & 0 \\
 +
0 & 1 & 0 \\
 +
0 & 0 & 3
 +
\end{bmatrix}
 +
x
 +
\begin{bmatrix}
 +
1 & 0 & 4 \\
 +
0 & 1 & 0 \\
 +
1 & 0 & 1
 +
\end{bmatrix}^{-1}
 +
= \begin{bmatrix}
 +
\frac{-2}{3} & 0 & \frac{2}{3} \\
 +
0 & 1 & 0 \\
 +
4 & 0 & -1
 +
\end{bmatrix}</math>
 +
 +
<math> \begin{bmatrix}
 +
\frac{-2}{3} & 0 & \frac{2}{3} \\
 +
0 & 1 & 0 \\
 +
4 & 0 & -1
 +
\end{bmatrix}^{-1}
 +
= \begin{bmatrix}
 +
\frac{1}{2} & 0 & \frac{1}{3} \\
 +
0 & 1 & 0 \\
 +
2 & 0 & \frac{1}{3}
 +
\end{bmatrix}</math>
 +
 +
Apply the decrypting matrix to <math>\begin{bmatrix}
 +
2 \\
 +
23 \\
 +
3 \\
 +
\end{bmatrix}</math> to get BWE.

Latest revision as of 17:04, 19 September 2008

Part C: Application of linearity

Part 1

Bob can decrypt the message by using the inverse of the encrypted matrix.

Part 2

No,I don't think so. But I looked at some other answers on the homework page, some do think differently. I will stick to the "no".

Part 3

This is how we get the message. $ \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} x \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} $

$ \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} x \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{-2}{3} & 0 & \frac{2}{3} \\ 0 & 1 & 0 \\ 4 & 0 & -1 \end{bmatrix} $

$ \begin{bmatrix} \frac{-2}{3} & 0 & \frac{2}{3} \\ 0 & 1 & 0 \\ 4 & 0 & -1 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & \frac{1}{3} \\ 0 & 1 & 0 \\ 2 & 0 & \frac{1}{3} \end{bmatrix} $

Apply the decrypting matrix to $ \begin{bmatrix} 2 \\ 23 \\ 3 \\ \end{bmatrix} $ to get BWE.

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn