Line 6: | Line 6: | ||
<math>e^{(2jt)} = cos{(2t)} + jsin{(2t)} --> system --> t*{(cos{(2t)} - jsin{(2t)})}\,</math><br> | <math>e^{(2jt)} = cos{(2t)} + jsin{(2t)} --> system --> t*{(cos{(2t)} - jsin{(2t)})}\,</math><br> | ||
+ | <math>e^{(-2jt)} = cos{(2t)} - jsin{(2t)} --> system --> t*{(cos{(2t)} + jsin{(2t)})}\,</math><br> |
Revision as of 09:53, 13 September 2008
- I am going to use the definition of Linearity that I learned in class.
- The definition
if x1(t) --> system --> y1(t)
x2(t) --> system --> y2(t)
Then ax1(t) + bx2(t) --> system --> ay1(t) + by2(t) , for any complex constants a,b
$ e^{(2jt)} = cos{(2t)} + jsin{(2t)} --> system --> t*{(cos{(2t)} - jsin{(2t)})}\, $
$ e^{(-2jt)} = cos{(2t)} - jsin{(2t)} --> system --> t*{(cos{(2t)} + jsin{(2t)})}\, $