Line 5: Line 5:
 
   Then ax1(t) + bx2(t) --> system --> ay1(t) + by2(t) , for any complex constants a,b  
 
   Then ax1(t) + bx2(t) --> system --> ay1(t) + by2(t) , for any complex constants a,b  
  
<math>e^{(2jt)} = cos{(2t)} + jsin{(2t)} --> system --> t*{(cos{(2t)} - jsin{(2t)})}\,</math>
+
<math>e^{(2jt)} = cos{(2t)} + jsin{(2t)} --> system --> t*{(cos{(2t)} - jsin{(2t)})}\,</math><br>

Revision as of 09:52, 13 September 2008

  • I am going to use the definition of Linearity that I learned in class.
  • The definition
 if x1(t) --> system --> y1(t)
x2(t) --> system --> y2(t)
Then ax1(t) + bx2(t) --> system --> ay1(t) + by2(t) , for any complex constants a,b

$ e^{(2jt)} = cos{(2t)} + jsin{(2t)} --> system --> t*{(cos{(2t)} - jsin{(2t)})}\, $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang